S09-02 05

The perfect coffee brew or a fabulous flavorful latte? A linguistic study of gender stereotypes in AI-generated Tinder profiles

Compartir en TWITTER/FACEBOOK/LINKEDIN

Deja tu comentario

Participa en esta ponencia enviádole tu pregunta o comentario a los autores

Añadir comentario

Firmantes

profile avatar
Clara Cantos delgadoUniversidad Complutense de Madrid

Enfoque

Introduction

Dating apps are among the most popular resources used by people nowadays to try and find a partner. However, online dating is a highly competitive environment and users are often disappointed by the lack of ”matches” (a ”match” occurs in most apps when two people mutually like each other’s profile). Therefore, it can be said, that the key to improving someone’s online dating experience resides in having the most possible appealing profile. Consequently, people can be expected to turn to the Internet for advice and, since the popularization of AI, they may also resort to open AI-powered language models, such as Chat GPT, to try and improve their profiles, or even create them from scratch. However, Chat GPT 3 has been found to sometimes recreate gender or cultural stereotypes, which may convey the idea that in order to improve one’s online dating experience, one may need to prioritise stereotypical self-presentations instead of more authentic representations of the self.

Objectives

The main objectives of this chapter consist of exploring in what ways Chat GPT 3 promotes gender stereotypes when instructed to create Tinder profiles.

Methodology

This is a qualitative study which analyzes the language used in 15 Tinder profiles created using Chat GPT 3. For this means, Chat GPT 3 was asked to create three versions of Tinder profiles that belonged to ”a 20-year-old […] who lives in the US”. The chatbot was then instructed to generate profiles for individual of different gender identities (woman/ man/ transgender), and sexual orientations (heterosexual/ LGBTQ+). The profiles were then coded with the help of Atlas.ti.

Results

After analysing the sample of Tinder profiles, it was observed that Chat GPT 3 did indeed replicate stereotypes when creating Tinder profiles of people from different gender identities and sexual orientations. First, it was observed that all Tinder profiles followed a similar structure. They all included three interests and an ”About me” section. No meaningful differences were observed in terms of bio length (183.75 words on average), punctuation or emoji usage. The ”About me” section began with a  description of the selected hobby and city. Then, it included a ”Swipe right if you’re looking for…” statement, followed by a fun fact and, finally, a paragraph about what the user might be ”Looking for”. A number of tendencies were observed when comparing the profiles considering the variables of gender and sexual orientation. The main findings have been summarized below. Explicit specifications of sexual orientation and gender identity in an activist manner were solely present in non-heterosexual and transgender profiles (e.g., ”🌈proud lesbian”, ”🏳️‍🌈proudly queer”, ”🏳️‍⚧️trans activist”). Non-heterosexual male profiles included more flamboyant descriptions than their heterosexual counterparts (e.g., ”I make a latte that’s as fabulous as it is flavorful” vs. ”I can brew up the perfect cup of coffee”). Non-heterosexual female users were presented as replicating certain stereotypes such as veganism (e.g. ”I can whip up a mean vegan lasagna”) and being strongly relationship-driven (e.g. ”Let’s write our own chapter in this story of love🌈” vs. ”Let’s create unforgettable moments in the City of Angels!”).

Preguntas y comentarios al autor/es

Hay 05 comentarios en esta ponencia

    • profile avatar

      Pedro Felipe Díaz Arenas

      Comentó el 29/11/2023 a las 22:08:11

      Good afternoon Dr. Clara
      Regarding your exposure, is it possible to measure the stereotype from mechanical data?

      • profile avatar

        Clara Cantos delgado

        Comentó el 29/11/2023 a las 22:22:51

        Thank you, Pedro, for your comment, however, I fail to understand what you mean by "mechanical data", could you please clarify?

    • profile avatar

      María Luisa Blanco Gómez

      Comentó el 29/11/2023 a las 17:51:08

      Buenas tardes, Clara, muy interesante tu estudio y una investigación profunda analizando las diferentes identidades y 'visiones' de los distintos tipos de usuarios de Tinder. Gracias por hacernos reflexionar y enhorabuena por la presentación, realmente interesante.
      Saludos,
      Marisa Blanco

    • profile avatar

      Clara Cantos delgado

      Comentó el 29/11/2023 a las 15:33:11

      Hola Elena, muchas gracias por tu comentario y tu enhorabuena. En efecto, considero que esa puede ser una buena posible aplicación de estudios como el mío. Al final, Chat-GPT se alimenta de la información disponible en distintos medios y como bien indicas, las identidades de las personas con diversas identidades de género aparecen a menudo ultrasimplificadas.

    • profile avatar

      Elena Bandrés Goldáraz

      Comentó el 29/11/2023 a las 14:34:33

      Hola, Clara. Muchas gracias por tu investigación. Quería preguntarte viendo tus resultados y lo que se está plasmando en este congreso si no ha llegado el momento de hacer una especie de "cuaderno de quejas", al estilo de la Revolución Francesa, a quienes programan este tipo de aplicaciones y todas en general que usan la Inteligencia Artificial. Es que estos estereotipos se dan también en la mayoría de los guiones cinematográficos, los que están concebidos para grandes audiencias, en series de TV, etc. Una cosa es que traten de simplificar personajes y sus diferentes opciones sexuales y otra cosa es que los reduzcan de manera estrambótica. Por eso investigaciones como la tuya ayudan primero a visibilizar el problema y, segundo, a intentar cambiar las cosas. Enhorabuena.


Deja tu comentario

Lo siento, debes estar conectado para publicar un comentario.

Organizan

Egregius congresos

Colaboran

Egregius ediciones